

PRILLED AMMONIUM NITRATE: SHIFTING FROM LDAN TO HDAN

Sept 2016

PRILLED AMMONIUM NITRATE: SHIFTING FROM LDAN TO HDAN

The Process

Product Change Over

Off Gas Control Equipment

ANNA Eindhoven Sept 2016

Owner Eurochem, Site : Novomoskov; Russia

Temperatures: -30 to + 30 C

Owner Eurochem, Site : Novomoskov; Russia

5

Vertically Integrated Producer

Note: all volumes expressed in thousands of tonnes; in brackets: initial commissioning date.

Owner Eurochem, Site : Novomoskov; Russia

The products for the project

1 st Stage Proposal LDAN				
AN Content	> 99,6%			
Moisture	< 0,12%			
Fuel Absorption	>12 w/w			
Granulometry	90% 1-2mm			

2nd Stage Proposal HDAN			
AN Content	> 98%		
Moisture	< 0,3%		
Granulometry	95% 1-4mm		

Commissioning HDAN				
AN Content	> 98%			
Moisture	< 0,3%			
Granulometry	95% 1-4mm			
Granulometry	80% 2-4 mm			
Granulometry	<3% < 1 mm			

EUROCHEM

The Process: LDAN

EUROCHEM

The Process: Differences

LDAN	HDAN
AN Solution: 96-97%	AN Solution: 98-99,8%
Moisture< 0,12%	Moisture < 0,3%
Needs Drying	Needs cooling
Internal additive	Magnesium Nitrate
Off Gas Particles	Off Gas: Submicron and aerosol

EUROCHEM

Product Change Over

- 1. Empty products, in case off spec to be reprocessed
- 2. Clean vessels to remove internal additives
- **3.** Check dust accumulations in ducts
- 4. Adjust blowers and air make up and purges to prill tower

PRODUCT CHANGE OVER

Final Product

HDAN

ANNA Eindhoven Sept 2016

 \bigcirc

espindesa

TECNICAS REUNIDAS

OPIND

MECS

ANNA Eindhoven Sept 2016

DuPont Clean Technologies

www.cleantechnologies.dupont.com www.mecs.dupont.com

Offgas Control Equipment - Brink[®] Mist Eliminator Scrubber System

- 20/Sept/2016
- NH Eindhoven Conference Centre Koningshof
- Steve Ziebold Principal Consultant MECS / DuPont Clean Technologies

Brink® Mist Eliminator Scrubber System for Eurochem

As part of the AN gas recycle tower project at Eurochem-Novomoskovsk, MECS and Espindesa worked together to provide a Brink[®] Mist Eliminator Scrubber System in 2013 for emission control on the off-gas.

Earlier Brink[®] Mist Eliminator Scrubber System for Recycle AN Prill Tower Project

- In 1995, MECS supplied a Brink[®] Mist Eliminator Scrubber System for an Espindesa AN gas recycle tower project in Austria.
- Installation has since operated successfully for 21 years.
- Original emissions were close to 350 ppm AN dust per Nm³ at times.
 - For above dust level, visible stack plume is typically greater than 20 percent as measured by EPA Method 9.
- After Installation
 - No visible aerosol plume originating from the plant
 - Emission 5 to 10 mg/Nm3.
 - No increase in pressure drop was observed across the Brink[®] Mist Eliminators after ten years of operation.

Brink® Mist Eliminator Scrubber Systems

Brink[®] Fiberbed Mist Eliminators have been successfully used for over 40 years in several large Brink[®] Scrubber System installations worldwide to:

- Control emissions from HDAN & LDAN prill towers
- Scrub purge gas from AN prill tower gas recycle systems
- Control granulator emissions

Brink® Mist Eliminator Scrubber Systems

Example: In 2015, multiple large Brink[®] scrubber systems installed in a US plant on HDAN and LDAN prill towers resulted in less than ~2 mg/m³ AN stack emissions.

DuPont Clean Technologies

Brink[®] HE "Plus" High Efficiency Mist Eliminator Provides AN Distribution, Dissolution & Drainage Diffusion fiber bed design in soluble salt mist applications is a balance to provide sustained mist capture while at the same time lowest operating pressure drop.

The Brink[®] Scrubber System provides proper control to humidify the vent gas and solubilize captured undissolved ammonium nitrate particles in order to ensure low operating pressure drop.

Brink[®] Diffusion Fiber Bed Mist Eliminators

Penetration vs Pressure Drop Example

DuPont Clean Technologies

Copyright © 2016 MECS, Inc.. All rights reserved.

Brink® Diffusion Fiber Bed Mist Eliminators

Element cages can be reused with a correct design. Here is an example of repacked HE cages showing some signs of age but still in good condition.

Service life of fiber bed mist eliminators can be extended in Brink[®] Scrubber Systems by maintaining equipment and proper operation.

DuPont Clean Technologies

AMMONIUM NITRATE MIST COLLECTION AND COALESCENCE

Standing Style Mist Eliminator Installation Example

DuPont Clean Technologies

Recycle AN Prill Tower Brink® Scrubber Design

It is important to know inlet particle AN loading and size distribution when designing Brink[®] Scrubber installations because mist eliminator design (and resulting performance) is very sensitive to undissolved AN particulate as well as particulate size.

Since recycle AN prill towers are different than full flow AN prill towers, there was concern regarding actual inlet loading and particle size for the Eurochem project.

Recycle AN Prill Tower Brink[®] Scrubber Design

Due to increased residence time of the ammonium nitrate particles in the wet gas recycle stream however, the overall mass mean particle size was expected to be larger compared to full-flow tower designs (which makes capture easier).

OUPOND

Recycle AN Prill Tower Brink® Scrubber Design

Eurochem design inlet AN loading was ~700 mg/Nm3 (higher compared to Austrian installation).

Particle size distribution measurement in the off-gas at the Austrian installation found a high level of submicron mist which was assumed at Eurochem.

Fiberbed Mist Collection

DuPont Clean Technologies

Estimating AN Emission Example

Mean Size -	% Mass	Predicted fractional	Predicted Mass Emission
Microns	Fraction	penetration	(mg/Nm3)
0.2	10	0.001	0.1
0.4	35	0.025	6.1
0.8	40	0.002	0.6

Benefits of Eurochem-Novomoskovsk Brink[®] Scrubber System

- 1. Remove AN Emission to less than 10 mg/Nm3 (allowance 49 mg/Nm3)
- 2. Eliminate visible stack opacity caused by AN mist
- 3. Remove ammonia upstream of mist eliminators
- 4. Recover extra product that would be lost to the environment
- 5. Set a good example for environmental stewardship within the industry
- 6. Improve long term relations with the local community and environmental agency

Brink® Mist Eliminator Scrubber Systems

Example: A large Brink[®] Scrubber System started up on high density full flow AN prill tower in 2013 resulting in AN stack emission of less than 5 mg/m³

Brink® Mist Eliminator Scrubber Systems

Example: A large Brink[®] Scrubber System started up on high density full flow AN prill tower in 2013 resulting in AN stack emission of less than 5 mg/m³

DuPont Clean Technologies

Special Thanks & Acknowledgements!!! Jose R Ferrer & ESPINDESA

DuPont Clean Technologies

Copyright © 2016 MECS, Inc. All rights reserved.

Thank You For Your Participation !

DuPont Clean Technologies

